・N. Asakura, et al., “Studies of Power Exhaust and Divertor Design for a 1.5 GW-level Fusion Power DEMO” appears in Nucl. Fusion (2017)
・N. Asakura, et al., “A Simulation Study of Large Power Handling in the Divertor for a Demo Reactor”, Nucl. Fusion, 53, 123013 (15pp) (2013)
・N. Asakura, et al., “Simulation study of power load with impurity seeding in advanced divertor, short super-X divertor, for a tokamak reactor”, J. Nucl. Mater., 463, 1238 (2015)
・N. Asakura, et al., “Investigation of Advanced Divertor Magnetic Configuration for DEMO Tokamak Reactor”, Transactions of Fusion Science and Technology, 63, 70-75 (2013)
・N. Asakura, et al., “Investigation of Carbon Dust Accumulation in the JT-60U Tokamak Vacuum Vessel”, J. Nucl. Mater., 438 (2013) S659–S663
・N. Asakura, et al., “Investigations of Impurity Seeding and Radiation Control for Long-pulse and High-density H-mode Plasmas in JT-60U”, Nucl. Fusion, 49, 115010 (8pp) (2009)
・N. Asakura, “Scrape-off Layer Plasma Flow in L- and H-Mode Plasmas on JT-60U”, Plasma and Fusion Res., 4, 021-1 (2009)
・N.Asakura and ITPA SOL and Divertor Physics Topical Group, “Understanding of the SOL Plasma Flow in Tokamaks, and Influence on the Plasma Transport”, J. Nucl. Mater., 363–365, 41-51 (2007)
・N. Asakura, et al., “Fast Measurement of ELM Heat and Particle Fluxes, and Plasma Flow in the Scrape-off Layer of the JT-60U Tokamak”, Plasma Phys. Control. Fusion, 44, A313-A321 (2002)
・N. Asakura, et al., “Measurement of Natural Plasma Flow along the Field Lines in the Scrape-Off Layer on the JT-60U Divertor Tokamak” Phys. Rev. Lett., 84, 3093-3096 (2000)
・N. Asakura, et al., “Heat and Particle Transport of SOL and Divertor Plasmas in the W-shaped Divertor on JT-60U”, Nucl. Fusion, 39, 1983-1994 (1999)
・N. Asakura, et al., “Degradation of Energy and Particle Confinement in High Density ELMy H-mode Plasmas on JT-60U”, Plasma Phys. Control. Fusion, 39, 1295-1314 (1997)
・N. Asakura, et al., “Field Reversal Effects on Divertor Plasmas under Radiative and Detached Conditions in JT-60U”, Nucl. Fusion, 36, 795-813 (1996)
・朝倉伸幸、他、「日本における原型炉ダイバータ概念の現状と開発課題」「ITER 及び原型炉ダイバータ工学の現状と研究開発」, Plasma Fusion Res. 92, 870-876 and 886-890 (2016)
・N. Umeda, E. Kashiwagi, H. Tobari, Y. Kojima, M. Dairaku, M. Hanada, T. Maeshima, K. Watanabe, H. Yamanaka:
Development of ultra-high voltage insulation technology for the power supply components
in neutral beam system on ITER,
26th IAEA Fusion Energy Conference, FIP/P4-10, Kyoto, (2017)
・Y. Sakamoto et al., “DEMO Concept Development and Assessment of Relevant Technologies”, 25th IAEA Int. Conf. on Fusion Energy (St. Petersburg, Russia, 2014) FIP/3-4Rb.
・Y. Sakamoto et al., “Relationship between net electric power and radial build of DEMO based on ITER steady-state scenario parameters”, Fusion Eng. Des. 89, 2440- 2445 (2014)
・Y. Sakamoto et al., “Present Status of Integrated Performance Achieved in Tokamak Experiments and Critical Issues Towards DEMO Reactor”, J. Plasma Fusion Res. SERIES 9 375 (2010)
・Y. Sakamoto et al., “Development of reversed shear plasmas with high bootstrap current fraction towards reactor relevant regime in JT-60U”, Nucl. Fusion 49, 095017 (2009)
・Y. Sakamoto et al., “Response of Toroidal Rotation Velocity to Electron Cyclotron Wave Injection in JT-60U”, Plasma Phys. Control. Fusion 48, A63-A70 (2006)
・Y. Sakamoto et al., “Stationary High Confinement Plasmas with Large Bootstrap Current Fraction in JT-60U”, Nucl. Fusion 45, 574-580 (2005)
・Y. Sakamoto et al., “Characteristics of Internal Transport Barriers in JT-60U Reversed Shear Plasmas”, Nucl. Fusion 41, 865-872 (2001)
・Y. Sakamoto et al., “DEMO Concept Development and Assessment of Relevant Technologies”, 25th IAEA Int. Conf. on Fusion Energy (St. Petersburg, Russia, 2014) FIP/3-4Rb.
・Y. Sakamoto et al., “Relationship between net electric power and radial build of DEMO based on ITER steady-state scenario parameters”, Fusion Eng. Des. 89, 2440- 2445 (2014)
・Y. Sakamoto et al., “Present Status of Integrated Performance Achieved in Tokamak Experiments and Critical Issues Towards DEMO Reactor”, J. Plasma Fusion Res. SERIES 9 375 (2010)
・Y. Sakamoto et al., “Development of reversed shear plasmas with high bootstrap current fraction towards reactor relevant regime in JT-60U”, Nucl. Fusion 49, 095017 (2009)
・Y. Sakamoto et al., “Response of Toroidal Rotation Velocity to Electron Cyclotron Wave Injection in JT-60U”, Plasma Phys. Control. Fusion 48, A63-A70 (2006)
・Y. Sakamoto et al., “Stationary High Confinement Plasmas with Large Bootstrap Current Fraction in JT-60U”, Nucl. Fusion 45, 574-580 (2005)
・Y. Sakamoto et al., “Characteristics of Internal Transport Barriers in JT-60U Reversed Shear Plasmas”, Nucl. Fusion 41, 865-872 (2001)
・Sugiyama Shota , Aiba Nobuyuki , Asakura Nobuyuki , Hayashi Nobuhiko , Sakamoto Yoshiteru:
Development of pulsed plasma operation scenario and required conditions in JA DEMO
Nuclear Fusion, (in press),
https://iopscience.iop.org/article/10.1088/1741-4326/ad49b6
・Sugiyama Shota , Aiba Nobuyuki , Asakura Nobuyuki , Hayashi Nobuhiko , Sakamoto Yoshiteru:
Parameter study of L-H transition for plasma operation scenario development
in JA DEMOFusion Engineering and Design, 187, 113369, 2023-02,
https://doi.org/10.1016/j.fusengdes.2022.113369
・Sugiyama Shota , Shinya Kichiro , Uto Hiroyasu , Aiba Nobuyuki , Sakamoto Yoshiteru:
A study on ohmic plasma initiation for JA DEMOFusion Engineering and Design, 172, 112779, 2021-11,
DOI:10.1016/j.fusengdes.2021.112779
・Y. Someya et al., “Shutdown dose rate assessment during replacement of in-vessel components for a fusion DEMO reactor”, Fusion Eng. Des. 124, (2017), 615-618.
・Y. Someya et al., “Management Strategy for Radioactive Waste in the Fusion DEMO Reactor”, Fusion Sci. Technol. 68 (2015), 1282-1285.
・Y. Someya et al., “Design study of blanket structure based on a water-cooled solid breeder for DEMO”, Fusion Eng. Des. 98-99 (2015), 1872-1875.
・Y. Someya et al., “Estimation of TBR on the gap between neighboring blanket modules in the DEMO reactor”, Plasma Sci. Technol. 15-2, (2013) 171-174.
・Y. Someya et al., “Estimation of decay heat in fusion DEMO reactor”, Plasma and Fusion Research 7 (2012), 2405066.
・S. Tokunaga et al., “Multi-scale transport simulation of toroidal momentum source profile effect on internal transport barrier collapse”, Nucl. Fusion 49, 075023 (2009)
・S. Tokunaga et al., “A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes”, Phys. Plasmas 19, 092303 (2012)
・S. Tokunaga et al., “Conceptual design study of pellet fueling system for DEMO”, Fusion Eng. Des., In Press, (2017)
Ryoji HIWATARI, Youji SOMEYA, Hiroyasu UTOH, Yoshiteru SAKAMOTO, "Unlimited Fusion-Energy Station Based on Lithium Recovery from Seawater for a Net-Zero Carbon World", Plasma and Fusion Research 18, 1205077(2003))
https://doi.org/10.1585/pfr.18.1205077
・R. Hiwatari, Y. Asaoka, K. Okano, T. Yoshida and K.Tomabechi, “Generation of Net Electric Power under the Foreseeable Physical and Engineering conditions”, Nuclear Fusion Vol.44, 2004, p106-116
・R.Hiwatari, K.Okano, Y.Asaoka, K. Shinya, and Y.Ogawa, “Demonstration tokamak fusion power plant for early realization of net electric power generation”, Nucl. Fusion Vol.45 No.2, 2005, p96-109.
・R.Hiwatari, K.Okano, Y.Asaoka, K.Tokimatsu, S.Konishi, Y.Ogawa, “Forthcoming Break-Even Conditions of Tokamak Plasma Performance for Fusion Energy Development” Journal of Plasma and Fusion Research Vol.81, No.11, 2005, p903-916
・R. Hiwatari, K. Okano, Y. Asaoka and Y. Ogawa, “Analysis of critical development issues towards advanced tokamak power plant CREST”, Nucl. Fusion Vol. 47, No.5, 2007, p387-394
・R.Hiwatari, K.Okano, Y.Ogawa, “Commissioning Scenario Without Initial Tritium Inventory for a Demonstration Reactor Demo-CREST”, Fusion Science and Technology 60, 2011, p1092-1095
炉心プラズマ設計
・R. Hiwatari, K. Okano, M. Ishida, K. Maeki, A. Hatayama, Y. Ogawa and M. Nakamura, “A control method of divertor plasma start-up assisted by tritium-ratio control for Demo-CREST”, Fusion Engineering and Design 86, 2011, p1099–1102
・R.Hiwatari, A.Hatayama, and T.Takizuka. “Effect of SOL Decay Length on Modeling of Divertor Detachment by Using Simple Core-SOL-Divertor Model”, Contrib. Plasma Phys. 48, 2008, p174-178
・Y. Homma et al., “Kinetic modelling for neoclassical transport of high-Z impurity particles using a binary collision method”, Nuclear Fusion 56, 036009 (2016).
・Y. Homma et al., “Numerical modeling of the thermal force for the kinetic test-ion transport simulation based on the Fokker-Planck collision operator”, Contributions to Plasma Physics 54, No. 4-6, 394-398 (2014).
・Y. Homma et al., “Numerical modeling of the thermal force in a plasma for test-ion transport simulation based on a Monte Carlo Binary Collision Model (II) -- Thermal forces due to temperature gradients parallel and perpendicular to the magnetic field --”, Journal of Computational Physics, 250, 206-223 (2013).
・Y. Homma et al., “Numerical modeling of thermal force in a plasma for test-ion transport simulation based on Monte Carlo Binary Collision Model”, Journal of Computational Physics, 231, 3211-3227 (2012).
ダイバータ損耗研究
• Y. Homma et al., “Numerical analysis of tungsten erosion and deposition processes under a DEMO divertor plasma and geometry”, Nuclear Materials and Energy, https://doi.org/10.1016/j.nme.2017.05.003
松永 剛
三善 悠矢
システム設計グループメンバー
三善 悠矢MIYOSHI, Yuya
所属
量子科学技術研究開発機構六ヶ所フュージョンエネルギー研究所ブランケット研究開発部
専門分野
核融合炉第一壁熱負荷、核融合炉プラント設備、核融合炉心制御、核融合炉設計
主要論文
核融合炉第一壁熱負荷
核融合炉第一壁熱負荷
核融合原型炉関連
核融合炉第一壁熱負荷 ・Y. Miyoshi et al., “New model of plasma heat load on the first wall”, Fusion Eng. Design xxx (2017). (in press), doi: https://doi.org/10.1016/j.fusengdes.2017.04.068
核融合炉プラント設備 ・Y. Miyoshi et al., “Optimized cooling water system design of Japan's DEMO”, Fusion Eng. Design (2017). (under submission)
核融合炉心制御 ・Y. Miyoshi Y. Ogawa, “Multi-Input Multi-Output (MIMO) Control System with a State Equation for Fusion Reactors”, Plasma Fusion Res. 9, 1405015 (2014).
・Y. Miyoshi et al., “Research on Burn Control of Core Plasma with the Transport Code”, Plasma Fusion Res. 7, 2405135 (2012).
核融合炉設計
・Y. Miyoshi et al., “Optimization of the Poloidal Field Coil System by Using an Integrated Design Code for Tokamak Fusion Reactors”, JPFR-S. 9, pp. 186-189, (2010).