

持続可能なエネルギー核融合とは

核融合とは、太陽と同じように「水素」などの軽い原子核同士が 猛スピードで衝突して、より重い原子核へと融合することです。 その時に大きなエネルギーが生み出されます。

太陽をはじめ宇宙の星は、この核融合のエネルギーで輝いたり 光ったりしています。地上でも水素の仲間の重水素と三重水素の 原子核を高温で融合させ、核融合を起こす事ができます。

三重水素 (トリチウム) 重水素 中性子

核融合エネルギーの優れた4つの特長

豊富な燃料資源

燃料のもとになる重水素とリ チウムは海水中に広く存在す るため、エネルギーの安定供

給が可能です。燃料は無尽蔵

であると考えられます。

優れた環境性

運転により二酸化炭素は 発生しません。核融合で発生 する放射性廃棄物は低レベ ル放射性廃棄物で、安全に管 理されます。

高い安全性

非常時には核融合反応は瞬 時に停止されます。燃料ガス として放射性物質であるトリ チウムを使いますが、その 閉じ込めに万全を期した 施設を作ります。

発電効率が良い

少ない燃料でたくさん発電 できます。

核融合燃料 1g

ITER計画とは

ITER 計画は核融合エネルギーが利用可能であること を科学技術的に実証するため、核融合実験炉 ITER を世 界30ヶ国以上の国が協力して建設する巨大な事業です。

ITER協定の下、加盟しているのは日本、欧州連合 (EU)、米国、ロシア、韓国、中国、インドの7極で、その規 模は全世界の人口の半分、また全世界の国内総生産 (GDP)の4分の3にもなります。

ITER日本国内機関

ITER に必要な機器の約9割は、加盟極が国内機関を通 じて調達し、ITER 建設サイトに納めることが、ITER 協定で 定められています。

量子科学技術研究開発機構は、ITER 計画における日本 の国内機関としての指定を受け、日本が分担する超伝導コ イルなどの機器・装置を製作してサイトに物納するととも に、ITER 計画に対する日本からの人的貢献の窓口として の役割を果たします。

ITER機構

プロジェクト実施のための国際機関

2007年10月24日に ITER 協定の発効と同時 に発足した ITER 機構は、 フランスのサン・ポール・ レ・デュランスに本部を 置き、ITER の建設と、 完成後の ITER の運転を

行う国際機関です。ITER計画は、このITER機構と7極の国 内機関との連携により進められています。

ITER機構への派遣活動

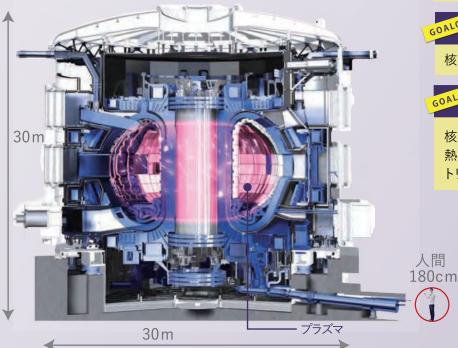
日本からの人的貢献の窓口

ITER 機構では、30ヶ 国以上から、1,000 人を 超える職員が国籍の壁 を飛び越えて働いてい ます。ITER機構は必要 な職員を ITER 計画の 参加国から公募してお

り、参加国である日本は ITER 機構職員の 18%を占める権 利を持っています。

ITER 日本国内機関(ITER Japan)は、公募情報の案内、

ITER日本国内機関は、 茨城県那珂市にある 那珂研 の中に あります


応募手続きの支援、応募者への トレーニングなどを行い、 一人でも多くの日本人職員が ITER 機構で活躍できるよう、政府

と一丸となって取り組んでいます。

核融合実験炉 TER イーター

ITER は、核融合反応が起こる条件を作り出し維持するために ドーナツ型形状をしたトカマク型の設計となっています。

ITER では、ドーナツ型真空容器の周りに配置された超伝導コイル による磁場と(高温の燃料の集まりである)プラズマ中に流れる 電流との作用によりプラズマを閉じ込めます。

ITERの3つの目的

核融合燃焼の実証

実際の燃料で核融合反応を起こし、 入力エネルギーの10倍以上の出力エネルギーを 300~500秒持続します。

GOAL02

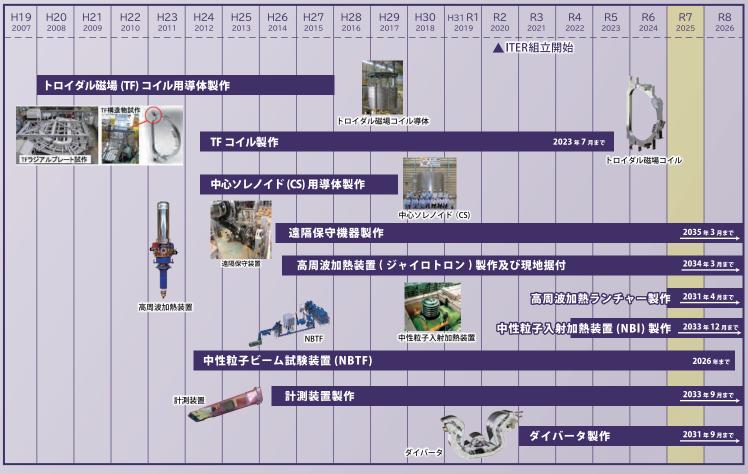
炉工学技術の実証

核融合による燃焼に必要な工学技術を実証します。

核融合エネルギーの取り出し試験

核融合による燃焼で発生する核融合エネルギーから 熱を取り出す試験を行います。また、燃料である トリチウムの自己補給を行うための試験を行います。

ITERの主要諸元


プラズマ主半径 …… 6.2m

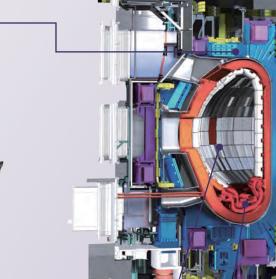
本体重量 ----- 23,000t

熱出力 ------ 500,000kW

日本の調達活動の現状 日本の主な調達スケジュール

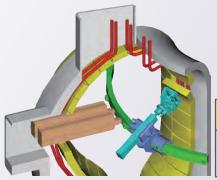
ITER機構及び他極の国内機関と協力しつつ、国際合意されたスケジュールに従って調達活動を展開中です。 大型超伝導コイルの実機製作、中性粒子入射加熱装置の製作など、他極を先導する貢献を果たしています。

日本が分担する調達機器と進捗


日本は、ITER 機構や他の加盟極と協力して ITER の主要機器を調達し、 ITER 建設に関して重要な役割を担っています。

トロイダル磁場(TF)コイル

高温のプラズマを閉じ込めるための磁場を発生させる 超伝導コイル


機器(装置)名	数量(割合)	進捗状況
導体	33 導体(25%)	全量製作完了 (2015 年)
構造物	予備 1機分を含む 19 機分 (100%)	全機分製作完了 (2021 年)
TF コイル (巻線・一体化)	予備 1 機を含む 9 機 (47%)	全機製作完了 (2023 年)

出荷状況

全量、全機出荷・納品完了

ブランケット遠隔保守機器

遮蔽ブランケットの保守・交換作業を行う遠隔操作機器

機器(装置)名	数量(割合)	進捗状況
ブランケット 遠隔保守システム、 ツール類	100%	最終設計 70% 達成

核融合炉保守点検用のロボットアーム

ダイバータ ※一部・

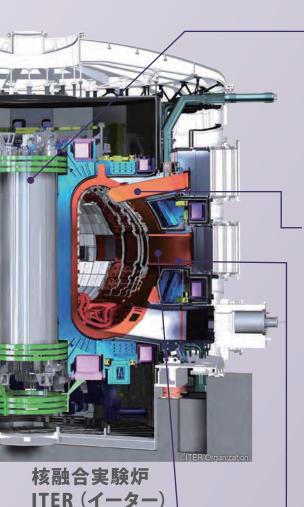
核融合で発生するヘリウムや不純物粒子を排出する装置

機器(装置)名	数量(割合)	進捗状況
外側ターゲット	58 基 (100%) 予備 4 基を含む	機器製作 7% 達成

TFコイルの重さは約360+、 大きさは 9×17m で、 ITER装置の中でも 最大級の部品です。

東芝エネルギーシステムズ㈱にて開催された 核融合実験炉 ITERトロイダル磁場コイル 最終号機完成 (2023年2月)

イーターちゃん


日本からフランスまでは 海路で、フランスの港から ITER 建設サイトまでは専用の 陸路で輸送が行われます。

(2023年3月)

TF コイル 3 機目の陸送の様子 (2021年3月)

中心ソレノイド(CS)

プラズマの立ち上げ、燃焼、立ち下げの制御に 必要な磁束を発生させる超伝導コイル

機器(装置)名	数量(割合)	進捗状況
導体	49 導体 (100 _%)	全量製作完了 (2017 年)

出荷状況 全量出荷・納品完了

計測装置 ※一部

プラズマ中のイオンと電子の密度や温度、不純物等の分布及び 中性子発生率を測定する装置

機器(装置)名	数量(割合)	進捗状況
5 つの計測装置 ・マイクロフィッションチェンバー ・周辺トムソン散乱計測装置 ・ポロイダル偏光計 ・ダイバータ不純物モニター ・ダイバータ赤外サーモグラフィー	約 15%	最終設計 55%達成 機器製作 22%達成
下部ポート統合機器		初期設計 を完了

高周波 (EC) 加熱装置 ※一部

電子レンジの原理を用いて電磁波でプラズマを加熱する装置

機器(装置)名	数量(割合)	進捗状況
ジャイロトロン	8機(33%)	全機製作完了 (2021 年)
	追加 20 機	IOとの契約手続完了
高周波加熱ランチャー (ポートプラグを含む)	50%	最終設計 95% 達成

出荷状況

ジャイロトロン8機を出荷、 ITER 建設サイトに納品完了

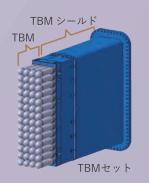
中性粒子入射加熱装置

高エネルギーの中性粒子をプラズマに入射させてプラズマを加熱する装置

※一部

機器(装置)名	数量(割合)	進捗状況
1MV 電源高電圧部	3 基(100%)	最終設計89%達成
高電圧ブッシング	3 基 (100%)	最終設計 73% 達成
加速器	1基(33%)	最終設計 80% 達成

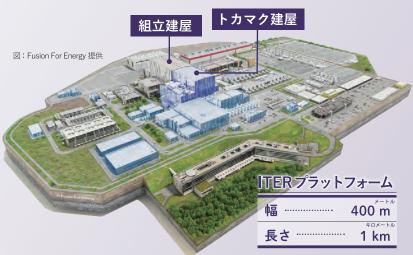
テストブランケット モジュール(TBM)


核融合反応で発生した熱エネルギー の取り出しと、核融合に必要な燃料 (トリチウム)の製造を試験する装置

トリチウムプラント ※一部

燃料であるトリチウムの分離回収、精製、処理、プラズマへ の再注入及び漏洩トリチウム除去を行うための設備

機器(装置)名	数量(割合)	進捗状況
トリチウム除去系	50%	最終設計 55% 達成



南フランスのサン・ポール・レ・デュランス(マルセイユから車で約 1 時間)の ITER 建設サイトでは、2007 年から ITER の建設が進められています。180 \sim クタールの広大な敷地には、42 \sim クタールの ITER プラットフォームがあり、ITER を建設するための複数の建屋が配置されています。

ITER 建設サイトでは、1,000 人を越える ITER 機構職員のほか、世界中から集まった、多くの技術者、研究者が ITER を完成させ、エネルギーを作る研究をするために働いています。

2020年7月、参加各極が分担する重要機器がITER 建設サイトに到着し、ITERの組立が公式に開始されました。

幅 60m、長さ 97m、高さ 60mの大きな組立建屋では、たくさんの部品の組立作業が行われています。サブセクター組立ツールは、真空容器セクターとサーマルシールド(熱遮蔽)、2 つの TF コイルを装着するサブセクター組立のための巨大なツールで、組立ホールに 2 つ設置されています。

アップエンディングツールは、サブセクター組立の際に 440t の真空容器セクターや 360t の TF コイルを水平から 垂直に立てるためのツールです。建屋の天井には 750t のクレーンが 2 基設置されており、サブセクターをトカマクピットに運びます。

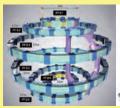
ここに ITER が 組み立てられます

2020年5月、トカマクピットにクライオスタットベースが設置されました。

2021 年 9 月、2 つ目の PF コイル #5(直径 17 m、 350t)がトカマクピットに配置されました。

2022 年 5 月、最初のサブセクターがトカマク ピットに設置されました。

クライオスタット って?


クライオスタットは、真空容器と超伝導コイルを 囲み、超低温の真空環境 を保つため稼働します。

ポロイダル磁場コイル (PF コイル)って?

真空容器の周りに配置された6つのポロイダル磁場コイル(PFコイル)は、超高温プラズマの形状と安定性を確保する

組立建屋 サブセクター組立

2021 年 4 月、1 つ目の真空容器セクター(440t) がサブセクター組立ツールに配置されました。

2021 年 6 月、TF コイル初号機がアップエンディングツールで水平から垂直に立てられました。

2021 年 9 月、2 つ目の TF コイルも取付けられ、 サブセクター組立準備が整いました。

2021年9月、真空容器セクターにサーマルシールド(熱遮蔽)パネルが取付けられました。

2021 年 11 月、1 つ目のサブセクター組立は mm 単位で位置調整され完成しました。

サブセクター組立って?

ITER トカマクは桁違いに重いため、1 つの 真空容器セクターに、2 つの TF コイル を取り付ける サブセクター組立を行い組み立てていきます。

最終的には全部で9つのサブセクターが作られ、順次トカマクピットに設置され、サブセクター間を繋ぎ、ドーナツ型のトーラスが完成します。

写真:ITER 機構提供

ITER の最新情報は ITER Japan の SNS で 日々更新中! 見に来てね♪

QR コードは裏表紙にあるよ

国立研究開発法人

量子科学技術研究開発機構

那珂フュージョン科学技術研究所

〒311-0193 茨城県那珂市向山 801 番地 1

電話 (代表): (029) 270-7213

FAX: (029) 270-7219

www.qst.go.jp/site/quantenergy/

(量子エネルギー研究分野)

ITER 日本国内機関

www.fusion.qst.go.jp/ITER/

